
dmb
Digital MeDia BriDge SenDer uSer’S guiDe

Cilutions - Digital Media Bridge
877-515-4004

www.cilutions.com

Contents

Introduction 1
 Overview 1
 Types of Sender User Interfaces 2
 Transaction Error Codes Appendix A
 Figures Appendix B
 Daily Logs Appendix C
 Video and Audio Multicasting Appendix D
FTP Interface 4
Web Browser Interface 7
Web Service Interface 8
XML Client Interface 9
DMB Transactions 10
 Parameter Attributes 10
 XML Transaction Model 10
 XML Interface Components 10
 XML Security 10
 Commands and Responses 11
Commands and Responses 11
• Group 11
 Command 11
 Parameters 11
 Command XML Format 11
 Response 11
• Group Status 12
 Command 12
 Parameters 12
 Command XML Format 12
 Response 12
• Group Summary 12
 Command 12
 Parameters 12
 Command XML Format 12
 Response 12
• Package 13
 Command 13
 Parameters 13
 Command XML Format 16
 Response 16
• Package Summary 16
 Command 16
 Parameters 16
 Command XML Format 16
 Response 16

• Package Status 17
 Command 17
 Parameters 17
 Command XML Format 17
 Response 17
• Package Confirmation Report 18
 Command 18
 Parameters 18
 Command XML Format 18
 Response 18
• Poll DMB Receiver Health 20
 Command 20
 Parameters 20
 Command XML Format 20
 Response 20
• Retrieve DMB Receiver Health 21
 Command 21
 Parameters 21
 Command XML Format 21
 Response 21

Introduction : Overview

Digital Media Bridge (DMB) is a content and video
distribution family of products useful for
distributing files and video streams from a sending
machine to multiple IP-based multicast and unicast
receiving machines in a connected network. It
operates in both multicast-enabled enterprise
networks and unicast-only networks, both private
and public.

The following diagram shows the end-to-end flow
of files and video from a customer’s source location
through the DMB platforms to the delivery end point.
The Sender platform accepts source content and
delivery commands from the user, manages the
outbound multicast groups, manages unicast
destinations, initiates file transfers, initiates streaming
video relay and controls and meters the
transmission process. The Receiver platform joins
multicast groups, listens on unicast ports, receives
and processes files and streaming video sent by the
Sender, and provides reception status to the Sender
when requested.

1

DMB supports distribution to both “receive-only” sites
(i.e., with no back channel to the Sender) and two-way
sites. DMB is especially tolerant of networks where con-
nectivity to one or more destinations is intermittent and
can guarantee delivery to end points operating in such an
environment.

DMB also supports file retrieval capability where the
Sender can pull a file from a Receiver or group of
Receivers back to a central server for processing. In this
way DMB supports distribution both outbound and
inbound.

This document describes the operational aspects for Users
of the DMB system. It concentrates on how a user interacts
with the DMB Sender in submitting files and video to the
network and controls their delivery.

Introduction : Types of Sender User Interfaces

The DMB Sender supports interfaces for both content (i.e.,
the files or streaming video source) and command opera-
tions (i.e., the instructions to the Sender controlling the
transmission of the content). As depicted in the diagram
below the user provides content one of two ways. Files,

either video or data, arrive through an FTP connection
from the user to the Sender. The files are placed either on
the Sender’s local hard drive or on a network shared drive
accessible to the Sender. Real-time streaming video origi-
nates at the time of transmission (say from an encoder
with multicast connectivity to the Sender) and the Sender
relays the v ideo stream from the source to the destination
receivers in real-time; the Sender does not store real-time
streaming video on disk.

After files have been deposited on the Sender the user
issues transmission related commands using one more of
the following interfaces:

• FTP – The user builds XML-formatted (described else-
where in this document) or plain text command files and
places them in a well-known directory on the Sender.
Command results are generated by the Sender and placed
in a well-known results directory for the user’s review.

• Browser user interface – Both HTML and Flash-based
Web Portals on the Sender offer user control of transmis-
sions and monitoring of results.

• XML Server to Server Interface – XML Command/Re-
sponse offers programmatic control of transmissions and
results monitoring.

2

OVERVIEW OF DMB
DELIVERY SYSTEM

3

SENDER INTERFACES

A Software Development Kit (SDK) is available with
example programs demonstrating how to interact with
the Sender using the multiple APIs supported.

4

FTP Interface

The Sender administrator sets up and enables one or more
FTP accounts on the Sender, one for each user login, offer-
ing access as depicted in the following diagram:

The root directory offers the following subdirectories used
as an interface between the user and the Sender:

• .../clientfiles - The video or data file that the Sender
transmits to one or more Receivers. The user puts files
here before registering them using one of the command
interfaces.

• .../envelope – File transmission commands controlling
the registration and transmission attributes of files in the
.../clientfiles directory. These commands are text or XML
formatted files which serve as instructions to the Sender.
The types of files are:
 • XML - Identified as files with an .xml extension
 and containing XML formatted commands. The
 precise command format is described in the
 Command XML Format section of this document.
 • Plain Text - Identified as files without an .xml
 or .vfx extension and containing plain text

 formatted commands. The complete set of
 pain text attributes and the format of this file can
 be viewed in the Web Forms interface using the
 “Render” button on the New Package screen.
 Context sensitive help is also provided there as a
 helpful guide.
 • VFX - Indentified as files with a .vfx extension and
 containing plain text registration and control
 information for multicast streaming video relay
 transmissions. The specific format of this file and
 how it controls video registrations are presented
 in the diagram on Video Relay in Appendix B.

FTP Interface

• .../log - Sender results of commands processed from the
.../envelope directory. When the Sender detects a file in
the .../envelope directory it performs the requested
operation (e.g., registers a new file for transmission), re-
moves the file from the .../envelope directory and puts the
results of the attempted operation in the .../log
directory. The name of the log file is the same name of the
file in the .../envelope directory but with _log appended.
If the original command in the .../envelope directory was
XML formatted (i.e., file name ended in .xml) then the .../
log file is an XML response; otherwise the .../log file is a
plain text description of the results.

• .../pkglog- User specific daily logging as described in
Appendix C.

• Hot Folders - Designed to offer “1 step registration” of
video or data files these directories let a user send content
by simply FTPing the file into a known directory. The
registration commands are set up ahead of time so the
user does not need to explicitly supply a command for
each new file. The directories involved are:
 • .../fwd_clientfiles - The Hot Folder Forward
 directory. When the Sender finds a file here it
 automatically moves it into the .../clientfiles
 directory and executes the default Hot Folder
 Registration command placing the results of the
 command in the .../log directory.
 • .../fwd_envelope - The Hot Folder Registration
 directory. This directory consists of two files which
 can be modified by a user to set the default
 command profile for Hot Folder video and data
 files. These are:
 • default_fwd.env - The command to run
 against any and all files which appear in
 the .../fwd_clientfiles directory.
 • default_email.env - The command to run
 against any and all files which arrive as an
 attachment to an email.

5

#Basic Envelope which removes any existing
#registration for a file then registers it for distribution
#to all sites in group TESTGROUP. The file will use the
#default attributes configured for this client (e.g., for
#transmission rate, delivery assurance). To override
#these default values include any new attributes in the
#body of the second envelope below. Use the “Render”
#button in the New Package screen on the Web Forms
#for help on these fields Note that the FILE_NAME and
#DEST_FILE_NAME attributes may not be modified.

#Registration results for each file placed in .../fwd_client
#files can be found in the .../log directory. The log file
#name is in <filename>_log format.
Begin
FILE_NAME <<FILENAME>>
DEST_FILE_NAME <<FILENAME>>
DESTINATION
Begin
enD
enD

Begin
FILE_NAME <<FILENAME>>
DEST_FILE_NAME <<FILENAME>>
DESTINATION
Begin
@MYGROUP, default
enD
enD

An example default_fwd.env file used to automatically register
files arriving in .../fwd_clientfiles and send them to sites in the
group named MYGROUP is as follows:

#DESC_NAME=email subject
#TOPIC=email subject
#DESCRIPTION=email body
#FILENAME=email attachment
Begin
FILE_NAME <<FILENAME>>
DEST_FILE_NAME <<FILENAME>>
DESTINATION
Begin
enD
enD

Begin
FILE_NAME <<FILENAME>>
DEST_FILE_NAME <<FILENAME>>
ASSURANCE CONFIRM
DESC_NAME <<DESC_NAME>>
TOPIC <<TOPIC>>
DESCRIPTION <<DESCRIPTION>>
DESTINATION
Begin
@MYGROUP, default
enD
enD

An example default_email.env file used to
automatically register files arriving as email
attachments and send them to sites in the group
named MYGROUP is as follows:

6

Web Browser Interface

The Sender administrator will set up and enable Web
Browser access to the Sender offering the following
 interface:

Here a user typically posts a video or data file to the Sender using FTP access then, using a Web Browser (e.g., Internet
Explorer), opens the URL provided to the user by the Sender Administrator. There are two Web Browser URLs offering two
types of access:

• Flash Forms - a Rich Internet Application (RIA) web portal requiring a Flash plug-in within the user’s browser. These
forms offer:
 • New File Registration
 • File Status Monitoring
 • Group Management
 • Bandwidth Controls
 • Optional Digital Signage Screen Management (works with Cilutions’ provided remote media players)

• Classic Forms - Internet Explorer access providing all the capabilities of the Flash Forms in a classic view.

SENDER WEB
BROWSER INTERFACE

7

Web Service Interface

The Sender administrator will set up and enable Web
Service access to the Sender offering the following
interface:

Here a user typically posts a video or data file to the Sender using FTP access then programmatically controls file and
video registration and management. The SOAP client issues commands to the Sender SOAP Web Service and receives
responses. The formal command set is provided separately as part of the Sender Software Development Kit (SDK) which
includes sample programs demonstrating how a SOAP client can interact with the Sender.

The command set broadly corresponds to the list of commands and responses for the XML Command/Response interface
described in detail later in this document.

8

SENDER WEB SERVICE
INTERFACE

XML Client Interface

The Sender administrator will set up and enable XML
Client access to the Sender offering the following
interface:

Here a user typically posts a video or data file to the Sender using FTP access then programmatically controls file and
video registration and management. The XML client issues commands to the Sender Web Server and receives responses.
The formal command set is provided separately as part of the Sender Software Development Kit (SDK) which includes
sample programs demonstrating how an XML client can interact with the Sender.

SENDER XML CLIENT
INTERFACE

9

DMB Transactions

This section provides a description of the individual
Sender transactions. The examples shown demonstrate
actual transactions in XML format (as files or as http
command response). These transactions are also
supported as plain text files and in SOAP command/
responses format.

DMB Transactions : Parameter Attributes

The classes of transaction parameters are as follows:

• Required – these must be supplied at the time of the
 transaction. They are rendered in bold.

• Profiled – these are mandatory parameters which can be
 preset in a Provider’s Profile to be used as a default if
 they are not provided at the time of the transaction.
 They are rendered in italics.

• Optional – these are not required. The Sender will use
 built-in defaults if they are not provided at the time of
 the transaction. They are rendered in regular font with
 the built-in default provided in the parameter’s
 description.

The attributes of commonly used transaction parameters
are as follows:

• GROUP – An up to 18 character, upper case, alpha-
 numeric string with no spaces.

• SOURCE_CLIENT – An up to 10 character, upper case,
 alpha-numeric string with no spaces.

• Siteid – An 8 character, upper case, alpha-numeric string
 with no spaces.

• FILE_NAME – An up to 254 character alpha-numeric
 string. Spaces are permitted.

DMB Transactions : XML Transaction Model

This interface supports posting XML formatted commands
to the Sender and receiving XML formatted responses.
These commands are either files (identified by a .xml
extension) placed in the …/envelope directory for this user
or within the body of an HTTP POST to the Sender CGI
program.

DMB Transactions : XML interface Components

• XML Commands – – issued by the client application. A
 sample html form for posting XML commands is as
 follows:

<HTML>
 <HEAD>
 <TITLE>SFXParse ISAPI Extension</TITLE>
 </HEAD>
 <BODY bgcolor=”white” topmargin=”10” leftmargin=”10”>
 <h2>SFXParse ISAPI Extension</h2>
 <p>Place XML envelope in the input text area and press “Submit”</p>
 <form action=”http://localhost/pdxml/sfxparse_iis.exe”
method=”POST”>
 <textarea name=xml cols=80 rows=20 wrap=OFF></tex¬tarea>

 <input type=”submit” value=”Submit”>
 </form>
 </BODY>
</HTML>

This form can be rendered in a Web browser. XML
commands, described below, can be pasted into the
textarea of this form and submitted to the Sender.

• XML Responses – Returned by the Sender in response to
 an XML command. The response is command specific as
 described below for each command.

• DtD– The Document Type Definitions used by the XML
 Parser to analyze the commands and responses. These
 are stored on the Sender and are accessible as a URL
 reference.

DMB Transactions : XML Security

Each user can be assigned (by the Sender Administrator)
a user account password. If configured, each transaction
from the corresponding user must contain the password
as a key to authenticate the user. Here is a sample XML
command which requests a summary of packages
currently registered by the client named ADMIN. The
command includes a key of abc123.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE packageSummaryCmd SYSTEM “.../dtd/pd/1.0/
pack¬ageSummaryCmd.dtd”>
<packageSummaryCmd>
 <sourceClient name=”ADMIN” key=”abc123”/>
</packageSummaryCmd>

The connection from the user to the Sender should be
over a secure, private, network connection. If using the
Internet this should be a Virtual Private Network (VPN).

10

DMB Transactions : Commands and Responses

This section defines the individual commands and
responses supported by the Sender XML Interface.

Each command is identified and its parameters are
described. An XML sample is also provided for each
command. There is a plain text description of each
response and its corresponding DTD is referenced where
the precise XML format can be derived.

The response to many of the commands is pass/fail.
Failures also contain an error code and text string. The
complete list of codes and strings is provided in
Appendix A.

A sample XML formatted pass response is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE response SYSTEM “.../dtd/pd/1.0/response.dtd”>
<response>
<pass/>
</response>

A sample XML formatted failure, with error code and
descriptive message, is:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE response SYSTEM “.../dtd/pd/1.0/response.dtd”>
<response>
<fail error=”7”>stop_time is in the past Tue May 29 12:32:00 2009
</fail>
</response>

Commands and Responses : Group

1. Command - There is a single command for this transac-
 tion, named GROUP. The DMB Sender creates a new
 group, redefines an existing group, or deletes an exist-
 ing group depending on the contents of the DESTINA-
 TION parameter.

2. Parameters - The following table describes the specific
 parameters within the GROUP transaction.

Entry Description
Group The unique name of the group.
SOURCE_CLIENT The source client name of an In-

formation Provider with an active
account.

Entry Description
DESTINATION The destination field consists of a

list of Receiver SiteIds. The format
for the DESTINATION field entries
is one Receiver SiteId per line.
An empty list (no siteid entries)
denotes that the group is to be
deleted.

3. Command XML Format - The group command DTD is
 groupCmd.dtd. A sample command is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE group SYSTEM “.../dtd/pd/1.0/groupCmd.dtd”>
<group name=”GROUP1”>
 <sourceClient name=”ADMIN”/>
 <destination>
 <site id=”TSTSITE1”/>
 <site id=”TSTSITE2”/>
 </destination>
</group>

4. Response - The group response DTD is response.dtd and
 contains:

Entry Description
StatuS Indicates:

• PASS
• FAIL

ERROR For a failed transaction, indicates:
<errno>

11

Commands and Responses : Group Status

 1. Command - There is a single command for this
 transaction, named GROUP_STATUS. The Sender
 queries its local DB and returns the group’s status as a
 response.

2. Parameters - The following table describes the specific
 parameters within the GROUP_STATUS transaction.

Entry Description
GROUP The name of the group
SOURCE_CLIENT The source client name of an In-

formation Provider with an active
account

3. Command XML Format - The groupStatus command
 DTD is groupStatusCmd.dtd. A sample command is as
 follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE groupStatusCmd SYSTEM “.../dtd/pd/1.0/groupSta-
tusCmd.dtd”>
<groupStatusCmd>
 <groupInfo name=”GROUP1”/>
 <sourceClient name=”ADMIN”/>
</groupStatusCmd>

4. Response - The groupStatusResponse response DTD is
 groupStatusResponse.dtd and contains:

Entry Description
StatuS Indicates:

• ACTIVE
• FAIL

ERROR For a failed transaction, indicates:
<errno>

DESTINATION The destination field consists of a
list of Receiver SiteIds, one per line

Commands and Responses : Group Summary

1. Command - There is a single command for this
 transaction, named GROUP_SUMMARY. The Sender
 returns the complete list of groups currently configured
 by this client.

2. Parameters - The following table describes the specific
 parameters within the GROUP_SUMMARY transaction.

Entry Description
SOURCE_CLIENT The source client

3. Command XML Format - The groupSummary command
 DTD is groupSummaryCmd.dtd. A sample command is
 as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE groupSummaryCmd SYSTEM “.../dtd/pd/1.0/group-
SummaryCmd.dtd”>
<groupSummaryCmd>
 <sourceClient name=”ADMIN”/>
</groupSummaryCmd>

4. Response - The groupSummaryResponse response DTD
 is groupSummaryResponse.dtd and contains:

Entry Description
StatuS Indicates:

• PASS – SOURCE_CLIENT valid
• FAIL – SOURCE_CLIENT invalid

ERROR For a failed transaction, indicates:
<errno>

DESTINATION The groups field consists of a list of
groups for this client, one per line.

A sample group summary response is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE groupSummaryResponse SYSTEM “.../dtd/pd/1.0/
groupSummaryResponse.dtd”>
<groupSummaryResponse>
<groups>
<groupInfo name=”TEST”/>
<groupInfo name=”TEST2”/>
<groupInfo name=”TEST1”/>
</groups>
</groupSummaryResponse>

12

Commands and Responses : Package

1. Command - There is a single command for this
 transaction, named PACKAGE. The Sender creates a
 new package, modifies the attributes of an existing
 pack age, or unregisters an existing package depending
 on the context of the referenced package or the
 contents of the parameters. If the package is already
 registered at the Sender then its attributes (e.g., its
 destination list) may be modified by the new parameter
 settings. If the DESTINATION list is empty then the
 package will be unregistered.

2. Parameters - The following table describes the specific
 parameters within the PACKAGE transaction

Entry Description
SOURCE_CLIENT The source client name informs

the Sender the client requesting to
broadcast a package and the
directory where the package is
located on the Sender.

FILE_NAME The up to 255 alphanumeric
character filename of the
package on the Sender. Ths name
can contain spaces.

DEST_FILE_NAME The up to 255 alphanumeric
character filename to use when
delivering the package to the
Receiver. This field lets a client
specify a destination package
name that is different from the
name on the Sender. If this field
is missing then it uses the same
name as the package on the
Sender.

Entry Description
ASSURANCE
<param>

Indicates what measures are to
be taken to ensure the package is
delivered to all addressed
receivers. Its options are:
1) RETRANSMIT where remotes
request retransmission of only
missed portions of a package, if
any;
2) CONFIRM which includes
RETRANSMIT and causes each
receiving remote to explicitly
notify the Sender when it has
successfully received the package;
and
3) BEST_EFFORT N where N is a
single decimal digit indicating how
many times to transmit the
package in its entirety. It can be
from 1 to 3. In this last case there is
no remote initiated retransmission
or confirmation.

INTERACTIVITY
<param>

Designates the initial transmission
method. Its options are:
1) PUSH to send the package
assuming each remote is listening
and ready to receive it;
2) PULL to wait for at least one
remote to request it before
sending the package. A remote
will request such a package
automatically without requiring
operator action; and
3) REQUEST which is the same as
PULL except a remote operator
must explicitly request the
package

BIT_RATE <param> The bit rate (Kbits/s) at which the
Sender should transmit the
package.

PRIORITY <param> The relative transmission
priority applied to the package.
This determines the order in which
packages will be transmitted and
preempted by the Sender when
several packages are scheduled
for transmission at the same time.
There are 8 priority levels, with 1
the highest, and 8 the lowest.

13

Entry Description
START_TIME
<param>

Indicates the earliest time, in
YYYY/MM/DD HH:MM:SS format,
the package may begin
transmitting. The default is now.

STOP_TIME <param> Indicates the latest time, in
YYYY/MM/DD HH:MM:SS format,
the package may begin
transmitting. The default is
set in the client’s profile as the
number of seconds after the
START_TIME.

DESC_NAME
<param>

The up to 40 alphanumeric
character descriptive name, with
spaces allowed, that is used by
the package explorer to
organize the presentation of
the package to the user at the
Receiver.

TOPIC <param> The up to 10 alphanumeric
character descriptive name, with
no spaces, that is used by the
package explorer to organize
the presentation of the package
to the user at the Receiver.

DESCRIPTION
<param>

The up to 510 alphanumeric
character descriptive name, with
spaces allowed, that is used by
the package explorer to
organize the presentation of
the package to the user at the
Receiver.

STATUS_REPORTING
<param>

The manner in which status (e.g.,
results of registration) should be
returned to the client. Its options
are:
1) EMAIL indicating that an email
status report should be sent to
the client reporting transaction
status;
2) LOG indicating that the
Sender should keep the
transaction status in its internal
log files only.

EMAIL_TEXT The client supplied text that
will be included in the package
transaction status report. This
text is placed in the email
message immediately following
the email header and prior to
the status report body.

Entry Description
EXPIRATION <param> The type of expiration which

applies to the package. Its values
are Manual (client will manually
remove the package
registration), Success (the
Sender will remove the
registration when all siteids have
confirmed package reception),
and Auto (the Sender will
automatically remove the
package registration when its
stop time expires).

LINK <filename> The actual file name of the
package on the Sender. The
Sender created a link from this
value to the Source Package
Name of this transaction. In this
way a client can submit
multiple views of the same
package without requiring
additional disk space for each
view. For example, this can be
used to load the same image to
different sets of Receivers at
different times.

DELIVER_ENVELOPE
<param>

Yes indicates the envelope (i.e.,
the internal Sender file showing
the package’s attributes) should
be delivered to each Receiver
creating the envelope subdirec-
tory if necessary. No indicates
it should not be delivered, and
Default indicates it should be
delivered only if the envelope
subdirectory already exists on
the Receiver. The default is
Default.

14

Entry Description
CONF_DEADLINE
<param>

The confirmation deadline of
the package in YYYY/MM/DD
HH:MM:SS format. When this time
arrives the Sender generates a
confirmation report, if a Status
Email Address has been provided,
and emails it to the client. If the
Expiration Type attribute is Auto,
the package will be expired at this
time. This field must be far enough
beyond the Stop Time of the
package to allow for a complete
package transmission with
confirmations from Receivers
distributed over a random backoff.
Contact the Sender Administrator
to determine the maximum time a
remote can wait before confirming
a package.

FEC_OVERHEAD The level of forward error
correction, 0 to 99, applied to the
package during transmission. This
is typically used when sending
content to ‘receive only’
Receivers. Each Receiver, if needed,
will use FEC to attempt to restore
lost packets during package
reception. This value determines,
as a percentage of the total size of
the package, the amount of error
correction to apply. The Sender
transmits all FEC data, if enabled,
immediately following a package’s
transmission.

DOSIGNATURE This is a 128-bit MD5 checksum of
the package. If enabled, it is gener-
ated at the Sender and
regenerated and verified at each
Receiver. This provides end-to-
end, package level, data integrity
validation.

DO_DELETE Remove this file from the Sender
when this Package Expires.

Entry Description
DESTINATION The destination field identifies the

Receivers for which the package
is intended. It contains the list of
destination SiteIds with a
destination <alias> (an alias of
DEFAULT points to the ...\load
directory on the receiver). An
empty destination list removes the
file registration on the Sender.

The destination field can also
include one of the following other
two options.
• BROADCST, <alias> - A single line
indicating that the package is for
all Receivers tuned to this Sender.
• @GROUPNAME, <alias> - A single
line indicating that the package is
for all Receivers which are
members of the designated group.

15

3. Command XML Format - The package command DTD is
 packageCmd.dtd. A sample command is follows. It
 shows the unregistration of a file named sample.txt and
 it reregistration in a single transaction.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE package SYSTEM “.../dtd/pd/1.0/packageCmd.dtd”>
<package>
 <contentInfo>
 <sourceClient name=”ADMIN”/>
 <fileName value=”sample.txt”/>
 <destFileName value=”sample.txt”/>
 <destinations>
 <destination/>
 </destinations>
 </contentInfo>
 <contentInfo>
 <sourceClient name=”ADMIN”/>
 <fileName value=”sample.txt”/>
 <destFileName value=”sample.txt”/>
 <assurance>
 <confirm/>
 </assurance>
 <interactivity type=”PUSH”/>
 <bitRateInfo>3000</bitRateInfo>
 <priorityInfo value=”HIGH”/>
 <time start=”2009/05/29 12:32:00”
stop=”2010/05/29 12:32:00”/>
 <descName>test desc name</descName>
 <topic>test topic</topic>
 <description>test description</description>
 <community name=”ALLSITES”/>
 <statusReporting email=””/>
 <emailText>Test EMail Text</emailText>
 <expiration value=”MANUAL”/>
 <confDeadline>2009/05/30 12:32:00</
confDeadline>
 <deliverEnvelope value=”DEFAULT”/>
 <fecOverhead>10</fecOverhead>
 <dosignature value=”YES”/>
 <destinations>
 <destination>
 <site id=”TSTSITE1”
destdir=”CLIENT1”/>
 <site id=”TSTSITE2”/>
 </destination>
 </destinations>
 </contentInfo>
</package>

4. Response - The package response DTD is response.dtd
 and contains:

Entry Description
StatuS Indicates:

• PASS
• FAIL

Entry Description
ERROR For a failed transaction, indicates:

<errno>

Commands and Responses : Package Summary

1. Command - There is a single command for this
 transaction, named PACKAGE_SUMMARY. The Sender
 returns the complete list of packages currently
 registered by this client.

2. Parameters - The following table describes the specific
 parameters within the PACKAGE_SUMMARY
 transaction.

Entry Description
SOURCE_CLIENT The source client name.

3. Command XML Format - The packageSummary com-
 mand DTD is packageSummaryCmd.dtd. A sample
 command follows. It requests the list of files names,
 along with their file ids, for all files currently registered
 by client ADMIN.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE packageSummaryCmd SYSTEM “.../dtd/pd/1.0/pack-
ageSummaryCmd.dtd”>
<packageSummaryCmd>
 <sourceClient name=”ADMIN”/>
 <detailsLevel value=”FILENAME_ID”/>
</packageSummaryCmd>

16

4. Response - The packageSummary response DTD is
 packageSummaryResponse.dtd and contains the list of
 file names and ids as follows:

Entry Description
StatuS Indicates:

• PASS
• FAIL

ERROR For a failed transaction, indicates:
<errno>

FILE_NAME The file_names field consists of a
list of Packages for this client. The
format for the FILE_NAMES field
entries is one package per line.

FILE_ID The fileid assigned by the Sender
to identify this file’s current
registration. This is a unique
number, systemwide, that
identifies the instance of a file. That
is, if a file is unregistered by name
then registered again the Sender
will assign it a new, ever
increasing, file id.

A sample package summary response is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE packageSummaryResponse SYSTEM “.../dtd/pd/1.0/
packageSummaryResponse.dtd”>
<packageSummaryResponse>
<fileID value=”27”/>
<fileName value=”1k.txt”/>
<fileID value=”28”/>
<fileName value=”filegen.exe”/>
<fileID value=”29”/>
<fileName value=”sample.txt”/>
</packageSummaryResponse>

Commands and Responses : Package Status

1. Command - There is a single command for this transac-
 tion, named PACKAGE_STATUS. The Sender queries
 its local DB and returns the package’s status as a re-
 sponse.

2. Parameters - The following table describes the specific
 parameters within the PACKAGE_STATUS transaction.

Entry Description
SOURCE_CLIENT The source client
FILE_NAME The file name of the package

3. Command XML Format - The packageStatus command

 DTD is packageStatusCmd.dtd. A sample command is as
 follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE packageStatusCmd SYSTEM “.../dtd/pd/1.0/packageS-
tatusCmd.dtd”>
<packageStatusCmd>
 <sourceClient name=”ADMIN”/>
 <filename value=”filegen.exe”/>
</packageStatusCmd>

4. Response - The packageStatus response DTD is packag-
 eStatusResponse.dtd and contains:

Entry Description
FILE_NAME The name of the file
FILE_ID The fileid assigned by the

Sender to identify this file’s
current registration. This is a
unique number, systemwide,
that identifies the instance of a
file. That is, if a file is
unregistered by name then
registered again the Sender will
assign it a new, ever increasing,
file id.

StatuS activeStatus indicates that the
stop time for this package has
not yet arrived. inactiveStatus
indicates that it has arrived and
the package will no longer be
transmitted by the Sender.

TRANSMISSIONS Indicates the number of times
all or parts of the package have
been transmitted.

QUEUED Indicates if the file is currently
queued for transmission.

tranSMitting Either YES or NO to indicate if
the package is currently
transmitting.

REGISTRATION_TIME Time the package was registered
at the Sender.

FIRST_TRANSMITTED Time the package was first
transmitted.

LAST_TRANSMITTED Time the package was last
transmitted.

DESTINATION_GROUP Destination Group Name, if any

17

A sample good package status response is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE packageStatusResponse SYSTEM “.../dtd/pd/1.0/pack-
ageStatusResponse.dtd”>
<packageStatusResponse>
<fileName value=”filegen.exe”/>
<fileID value=”28”/>
<activeStatus/>
<transmissions>1</transmissions>
<queued>NO</queued>
<transmitting value=”NO”></transmitting>
<registrationTime>Tue Dec 17 18:02:05 2009</registrationTime>
<firstTransmitted>Tue Dec 17 18:02:13 2009</firstTransmitted>
<last_transmitted>Tue Dec 17 18:02:13 2009</last_transmitted>
<destinationGroup></destinationGroup>
</packageStatusResponse>

A sample failed package status reponse (for a file which is
not registered in the Sender) is:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE packageStatusResponse SYSTEM “.../dtd/pd/1.0/pack-
ageStatusResponse.dtd”>
<packageStatusResponse>
<unknownStatus/>
</packageStatusResponse>

Commands and Responses :
Package Confirmation Report

1. Command - There is a single command for this transac-
 tion, named PACKAGE_CONFIRMATION. The Sender
 returns a confirmation report listing the delivered status
 of the package at each destination site where the pack-
 age was addressed.

2. Parameters - The following table describes the specific
 parameters within the PACKAGE_CONFIRMATION trans-
 action.

Entry Description
SOURCE_CLIENT The source client name

FILE_NAME The file name of the package
unique to this client

FILE_ID The fileid assigned by the Sender
to identify this file’s current
registration. This is a unique
number, systemwide, that
identifies the instance of a file. That
is, if a file is unregistered by name
then registered again the Sender
will assign it a new, ever
increasing, file id

3. Command XML Format - The packageSummary com-
 mand DTD is confirmationStatusCmd.dtd. A sample
 command follows. It requests a status report of the
 package with a fileid of 30

<!DOCTYPE confirmationStatusCmd SYSTEM “.../dtd/pd/1.0/confir-
mationStatusCmd.dtd”>
<confirmationStatusCmd>
 <sourceClient name=”ADMIN”/>
 <fileID value=”30”/>
</confirmationStatusCmd>

Here is a similar command requesting the report by file
name instead of id:

<!DOCTYPE confirmationStatusCmd SYSTEM “.../dtd/pd/1.0/confir-
mationStatusCmd.dtd”>
<confirmationStatusCmd>
 <sourceClient name=”ADMIN”/>
 <fileName value=”4MB.txt”/>
</confirmationStatusCmd>

4. Response - The package confirmation response DTD is
 confirmationStatusResponse.dtd and contains the list of
 file names and ids as follows:

Entry Description
StatuS Indicates:

• Pass
• Fail

ERROR For a failed transaction, indicates:
<errno>

FILE_NAME The file_names field consists of a
list of packages for this client. The
format for the FILE_NAMES field
entries is one package per line

FILE_ID The fileid assigned by the Sender
to identify this file’s current
registration. This is a unique
number, systemwide, that
identifies the instance of a file. That
is, if a file is unregistered by name
then registered again the Sender
will assign it a new, ever
increasing, file id

Unconfirmed/
Confirmed

Indicates whether or not the file
has been completely confirmed by
all addressed sites

18

Entry Description
Confirmation State The state of this file on the

corresponding receiver. It can be
one of:
• Not Confirmed
• Delivered OK – No install program
run at the receiver
• No Client – No client at the
receiver
• Bad Client Directory – cannot write
into destination directory
• FInstall Error Code – install
program returned an error
• FInstall Timed Out – install
program never completed
• Error Changing Ownership –
Cannot set the owner of the
delivered file to the same as the
parent directory
• No Disk Space to Load – not
enough space to initially load
the file into the receiver’s staging
directory
• No Disk Space to Install – not
enough space to move the file
from its staging directory to the
client’s destination directory
• No Bandwidth – The receiver’s
configuration does not permit
receiving this file at its announced
bit rate
• FAnnounce Rejected – The
FANNOUNCE application at the
receiver rejected even loading this
load
• Filtered Out – The receiver has
configured a filter mask which
rejects loading this file
• Installed OK – File delivered and
install program completed
successful

errno The error code returned by FInstall
at the receiver. This is customer
defined

numloads The number of load attempts, in
whole or in part, needed to receive
this file

Cnftime The time, normalized to the
Sender’s time, this file was written
into the client’s destination
directory at the receiver

erasures The number of missed packets
during the first load attempt at the
receiver

A sample package confirmation response that reflects a
package addressed to 3 sites and confirmed by one is as
follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE confirmationStatusResponse SYSTEM “http://ROCK-
SOFT05/dtd/pd/1.0/confirmationStatusResponse.dtd”>
<confirmationStatusResponse>
<fileName value=”4MB.txt”/>
<fileID value=”30”/>
<unconfirmedStatus/>
<confirmationStatus>
 <site id=”WINXP001”/>
 <cnfstate>Not Confirmed</cnfstate>
 <errno>0</errno>
 <numloads>0</numloads>
 <cnftime>...Not Confirmed...</cnftime>
 <erasures>0</erasures>
</confirmationStatus>
<confirmationStatus>
 <site id=”WINXP002”/>
 <cnfstate>Not Confirmed</cnfstate>
 <errno>0</errno>
 <numloads>0</numloads>
 <cnftime>...Not Confirmed...</cnftime>
 <erasures>0</erasures>
</confirmationStatus>
<confirmationStatus>
 <site id=”WINXP003”/>
 <cnfstate>Delivered OK</cnfstate>
 <errno>0</errno>
 <numloads>1</numloads>
 <cnftime>2009/12/18 13:20:15</cnftime>
 <erasures>0</erasures>
</confirmationStatus>
</confirmationStatusResponse>

19

Commands and Responses :
Poll DMB Receiver Health

1. Command - There is a single command for this trans-
 action, named POLL_RECEIVER_HEALTH. The Sender
 issues a multicast ping (i.e., mping) to the subset of
 requested remotes, waits for responses, and aggregates
 all responses into a local flat-file log of the polling
 results.

 Note that only one poll sequence can be outstanding
 at a time. Any requests received while a poll is in prog-
 ress will be spooled, on the Sender, for single-
 threaded execution.

2. Parameters - The following table describes the specific
 parameters within the POLL_RECEIVER_HEALTH transac-
 tion.

Entry Description
SOURCE_CLIENT The source client name for this

request
REQUEST_ID The globally unique id chosen by

the client to associate with this
poll request

TIMEOUT The number of seconds to wait for
a response from receivers. Default
of 60

retrieS The number of times to retry an
mping to unresponsive receivers.
Default of 0

DESTINATION The destination field identifies the
Receivers for which the mping is
intended. The destination field
contains the complete list of Site-
Ids to poll. The list of entries can
also include one of the following
two options:
• BROADCST- a single line
indicating that the mping is for all
receivers.
• @GROUPNAME - The Sender
expands the group name into a
list of Receiver SiteIds at parse
time (i.e., when the transaction
is posted). These are the SiteIds
which will be mping’d

3. Command XML Format - The pollReceiverHealth com-
 mand DTD is pollReceiverHealthCmd.dtd. A sample
 command of a BROADCST mping is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE PollReceiverHealthCmd SYSTEM “.../dtd/pd/1.0/pollRe-
ceiverHealthCmd.dtd”>
<PollReceiverHealthCmd>
 <sourceClient name=”ADMIN”/>
 <requestId>test</requestId>
 <timeout>60</timeout>
 <retries>1</retries>
 <receiverDestination>
 <destination/>
 </receiverDestination>
</PollReceiverHealthCmd>

4. Response - The pollReceiverHealth response DTD is
 response.dtd and contains:

Entry Description
StatuS Indicates:

• PASS
• FAIL

ERROR For a failed transaction, indicates: <errno>

20

Commands and Responses :
Retrieve DMB Receiver Health

1. Command - There is a single command for this
 transaction, named RETRIEVE_RECEIVER_HEALTH. The
 Sender returns the results of the last
 POLL_RECEIVER_HEALTH operation

2. Parameters - The following table describes the specific
 parameters within the RETRIEVE_RECEIVER_HEALTH
 transaction

Entry Description
SOURCE_CLIENT The source client name for this

request
REQUEST_ID The globally unique id chosen

by the client for which status is
requested

3. Command XML Format - The retrieveReceiverHealth
 command DTD is retrieveReceiverHealthCmd.dtd. A
 sample command is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE retrieveReceiverHealthCmd SYSTEM “.../dtd/pd/1.0/
retrieveReceiverHealthCmd.dtd”>
<retrieveReceiverHealthCmd>
 <sourceClient name=”ADMIN”/>
 <requestId>test</requestId>
</retrieveReceiverHealthCmd>

4. Response - The retrieveReceiverHealth response DTD is
 retrieveReceiverHealthResponse.dtd and contains:

Entry Description
StatuS Indicates:

• PASS
• FAIL

ERROR For a failed transaction, indicates: <errno>
RESPONSES The responses field consists of a list of

receiver responses for the previous polling
sequence. The format for the responses
field entries is one remote response file
contents per line. Each line begins with
a SiteId followed by the IP address of the
siteid and an optional free format ascii text
string up to 1K characters in length. This
string is provided by the remote in its
reponse to the Sender. Its contents is
remote defined

A sample retrieve Receiver health response follows. It
shows responses from two Receivers, each with multiple IP
addresses (multi-homed platforms) and additional health
status information.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE retrieveReceiverHealthResponse SYSTEM “.../dtd/
pd/1.0/retrieveReceiverHealthResponse.dtd”>
<retrieveReceiverHealthResponse>
<pass/>
<responses>
<siteId name=”WINXP001”>
1.1.1.5,10.4.4.4,Free Disk Space:2367289289, OS: XP
</siteId>
<siteId name=”WINXP003”>
1.1.1.1,10.4.4.9,Free Disk Space: 367833939, OS: XP
</siteId>
</responses>
</retrieveReceiverHealthResponse>

21

Appendix A : Transaction Error Codes

Transaction Error Codes

Errno Description
1 Invalid Group name
2 Not all sites belong to this client
3 Client <client name> is not valid
4 Client link file <file name> not found
5 Can not link file <link file name> to <file name>
6 Client file <file name> not found
7 Stop_time is in the past <time>
8 The bit rate is higher than available bandwidth of: <number> bps
9 The bit rate specified is larger than provider’s maximum allowed bit rate
10 The bit rate specified is smaller than the provider’s minimum allowed bit rate
11 The bit rate specified is smaller than provider’s minimum allowed bit rate
12 Invalid start time (stop time is before start time)
13 Client/file <client name>/<file name> previously NOT set for CONFIRM
14 Cannot add element to publisher: <client name> community: <community name> in CAS
15 Cannot delete file id: <number> from CAS
16 Invalid DESTINATION field, SiteId: <number>
17 Invalid timeout requested
18 Invalid number of retries requested
19 Poll sequence still outstanding
20 Invalid Request Id
21 SOURCE_CLIENT not an Administrator
22 Invalid community name
23 Invalid IPMC
24 IPMC Address already in use
25 Group name too long
26 Error in expanding group definition
27 Source client not found
28 Source client name too long
29 Source client does not have privileges
30 target client name too long
31 Link file name too long
32 Invalid Default Stop Time
33 Invalid Bit Rate
34 Invalid destination SITE ID name length
35 Source client name still undefined
36 Community name too long
37 Undefined community parameter
38 Invalid Community name in envelope
39 Can’t connect to Conditional Access Server
40 Undefined Access Level for the Community
41 eMail address too long
42 Invalid YEAR/MONTH/DAY Format

Errno Description
43 Invalid YEAR/MONTH/DAY Format - not a leap year
44 Invalid HH:MM:SS Format
45 Can’t convert YYYY/MM/DD HH:MM:SS to calendar time
46 Invalid destination client name length
47 Invalid Reservation ID
48 Invalid HH:MM Format
49 REPETITION string too long
50 INVALID REPETITION string
51 SERVICE string too long
52 INVALID SERVICE string
53 Invalid ACTUAL DURATION
54 Invalid BANDWIDTH
55 Invalid Default FEC
56 Maximum number of envelopes exceeded
57 Can not obtain file size
58 <token> too long
59 Envelope incomplete - missing DESTINATION
60 Missing BEGIN in DESTINATION field
61 Invalid Envelope Format
62 Invalid Destination comm-server name length
63 Invalid Envelope Format
64 Not all sites belong to client <client name>
65 Sites in envelope do not subscribe to client <client name>
66 ACTUAL_DURATION greater than 24 hours!
67 Invalid BEGIN found
68 BwResParser: Invalid keyword <string>
69 Invalid HH:MM Format
70 Invalid EMail address
71 Invalid <token>
72 Undefined community parameter
73 Invalid Client name for this Provider
74 Undefined operation
75 Undefined parameter in Community envelope
76 Incomplete envelope, missed Destination
77 <string> is a undefined community type
78 Unknown parameter in Status Reporting
79 Invalid IPMC length
80 Missing BEGIN in IPMC_ADDRESSES field
81 Invalid IPMC Format
82 Address <string> is not IPMC
83 Access Control Error: <string> does not subscribe to client <client name>
84 Too many sites to add and/or delete from this community, adding: <number>, removing: <number>, max

allowed: <number>
85 Conditional Access Error. Can’t redefine <community name> community <client name> client

Errno Description
86 Database Error: Sites could not be deleted from community <number>
87 Database Error: <site name> could not be added to <number>
88 Too many sites to append to this community, count: <number>, max allowed: <number>
89 Conditional Access Error. Can’t redefine <community name> community <client name> client
90 Too many sites to delete from this community, count: <number>, max allowed: <number>
91 Delete failed. Site <site name> does not belong to <community name> community <client name> client
92 Community <community name>, Client <client name> has children. Can’t delete
93 Community <community name>, Client <client name> is root community. Can’t delete
94 Conditional Access Error. Can’t delete <community name> community <client name> client
95 Too many sites to add to this new community, count: <number> max allowed: <number>
96 Conditional Access Error: Could not create community <community name> client <client name>
97 Not all sites belong to this Provider
98 Client is not allowed to create communities
99 Default priority can not be greater then Maximum priority
100 ClientMinBitRate can not be greater then ClientMaxBitRate
101 ClientDefBitRate has to be between ClientMinBitRate and ClientMaxBitRate
102 Client <client name> is not valid
103 STARTTIME = STOPTIME and Expiration = AUTO ... not allowed
104 STARTTIME = STOPTIME not allowed
105 requestable file cannot be periodic
106 periodic file must have repetition value
107 RETRANSMIT or CONFIRM delivery assurance cannot have repetition value
108 REQUEST is only interactivity permitted with explicit community
109 PULL and BEST_EFFORT is not a valid combination
110 REQUEST and BEST_EFFORT is not a valid combination
111 PRICE parameter may only be used with an explicit community
112 The CONFIRM delivery assurance cannot be used with BROADCST destination option
113 EMAIL address not defined for EMAIL type of logging
114 SUCCESS expiration type works only with CONFIRMable packages
115 Confirmation Deadline can not be used with non confirmable package
116 Too early Confirmation Deadline
117 Envelope Incomplete: Missing SOURCE_CLIENT
118 Envelope Incomplete: Missing FILE_NAME
119 Envelope Incomplete: Missing DEST_FILE_NAME
120 Envelope Incomplete: Missing DESTINATION
121 must specify CLIENT
122 must specify REPETITION
123 must specify bandwidth
124 enddate can not be earlier than startdate
125 first reservation timeslot should be later than <time>
126 first reservation timeslot should be earlier than the last reservation slot
127 attempting to use default streamname
128 attempting to use default email address

Errno Description
129 must specify reservation id
130 must specify one of the parameters to modify
131 Unable to validate bandwidth reservation envelope:
132 Cannot modify element for pub: <client name> from comm: <community name> to comm: <community

name> in CAS
133 Error in CAS transmission, rejected
134 Can’t recover after error in CAS transmission, rejected
135 Source file name too long
136 Client * NOT assigned to gateway for stream *
137 Requested bandwidth should be greater than minbitrate (* kbps) configured for client*
138 Requested bandwidth should be less than maxbitrate (* kbps) configured for client*
139 Unable to find *
140 Requested bandwidth exceeds bandwidth limits on gateway
141 Requested bandwidth exceeds per-provider bandwidth limits on shared gateway
142 Reservation id: * NOT FOUND
143 Cannot modify a cancelled reservation
144 Cannot modify a previously modified reservation
145 Cannot modify an expired reservation
146 ADMIN_ACCOUNT_ERR
147 Invalid FEC Overhead
148 Destination file name too long
149 Can not read envelope file
150 Invalid keyword
151 More than one group defined
152 Invalid Priority Value
153 PreProcess file name too long
154 Invalid Interactivity Value
155 Invalid descriptive name
156 Unknown Expiration Type
157 Unknown Envelope Delivery Type
255 XML Validation Error

Appendix B : Figures

Video File Extension Format

When registering files for transmission the Sender supports the “Video File Extension”
format to designate the IPTV streaming parameters. A .vfx files designates the streaming
video source to relay, the destination addressing and the number of seconds that the
video should remain active once transmission begins. The following example network
configuration includes the .vfx file format:

Appendix C : Daily Logs

Daily Logs

The logs described in this appendix contain daily
records of activity of various events throughout
the life of user files. Each log name is formatted as
<LogFileName><MM>-<DD> where MM is the month
and DD is the day of the log. For example the parser log
file for May 1, 2009 is named ParseLog05-01.

The package parser and scheduler logs are formatted with
whitespace separated fields where each line contains a
single log entry. The request and confirmation logs con-
tain a fixed length record on each line with a single space
separating the fields. The field lengths are provided below.
All logs, if enabled by the Sender administrator, are stored
by the Sender in the …/pkglog directory under a particu-
lar user’s account. These logs can be accessed through the
user’s FTP conection.

The logs should be archived and purged on at least an
annual basis to keep the number of log files from growing
beyond a year’s worth of logging information.

Daily Logs : Package Parser Log

This is an audit trail of each package registration for the
user. A sample entry from ParseLog05-01, is:

00001 20090501115633 20090501121000 XYZCORP 0002805743New “2224555.mpg”
00001 20090501115636 20090501121000 XYZCORP 0002805744New “2224556.mpg”
00001 20090501115639 20090501121000 XYZCORP 0002805745New “2224557.mpg”
00001 20090501115642 20090501121000 XYZCORP 0002805746New “2224555.mpg”

Field Meaning
00001 Parser log version
20090501115642 time of registration

20090501121000 Requested package transmission
time

XYZCORP Owner of the package

0002805746 Unique package id

...new Action. Values are: New, Update.

2224555.mpg Package name (enclosed in quotes)

Daily Logs : Package Scheduler Log

This is an audit trail of all package transmission activity for the
user. It shows all transmission starts, stops, and preemptions. A
sample, from the file named SchedLog05-01, is:

00001 20090501120641 3/3 Transmit XYZCORP 0002805619 “2196006.mpg”
00001 20090501120710 3/3 Finished XYZCORP 0002805619 “2196006.mpg”
00001 20090501120710 3/3 Transmit XYZCORP 0002805618 “2196218.mpg”
00001 20090501120824 3/3 Finished XYZCORP 0002805618 “2196218.mpg”

Field Meaning
00001 Scheduler log version
20090501120710 Timestamp of the action

3/3 Sender transmit Stream

Finished Action. Values are: Transmit,
Preempt, Ack, Resume, Finished,
abort

XYZCORP Owner of the package

0002805619 Unique package id

2196006.mpg Package name

Daily Logs : Request Log

This is a comprehensive audit trail of each package re-
quest received from a remote. A sample, from the file
named Request01-11.log, is:

20090111101742 “REQUEST “ 0000000003 TESTSITE
10.4.4.4 “Client File “ 224.1.3.1:6531 10.4.4.4:6531 fffffffffff
ffffffffffffffffffffffffffffffffffffff3fff
fff
ffffffffffffffffffffc0000000000000003fffffffffffffffffffffffffff ffffffffffffff
fffffffffffffffffffffffffffffffffff3ff
fff
fffffffffffffffffc0000000000000003fffffffffffffffffffffffffff

Field Meaning Field
Length

20090111101742 Date and Time Request 14
“REQUEST” “REQUEST” or “DUPLICATE

REQUEST” or “ERROR”. A
duplicate means that the
file is already queued for
transmission. an error
means that the file is no
longer registered in the
Sender’s local database.

19

0000000003 Unique package id 10

teStSite Site ID of the requesting
remote

8

10.4.4.4 IP of the requesting
Receiver

17

“Client File” Client File or FEC. This
is the type of file being
requested. FEC requests
the parity file needed to
apply forward error
correction

17

224.1.3.1:6531 The IPMC:Port or IP:Port
the Receiver is
listening to for the
Broadcast announcement
for this package.

25

Field Meaning Field
Length

224.1.3.1:6531 IP:Port which designates
the interface the Receiver
is listening to for the
Broadcast accouncement
for this package. An IP
address of 0.0.0.0 indi-
cates that the announce-
ment can arrive on any
number will always the
same as the port where
the receiver is listening
to for the announcment.
This field is relevant on
a multi-homed Receiver
which may be configured
to accept initial transis-
sion of a package through
one local adapter and the
retransmission through
another adapter. Any
“separate retransmit
channel” configuration
like this must match on
the Sender and every
Receiver in the network.

25

fffffffffffffffffffffffffff
ffffffffffffffffffff3fffff
fffffffffffffffffffffffffff
fffffffffffffffffffffffffff
fffffffffffffffffffffffffff
fffffffffffffffffffffffffff
fffffffffffffffffffffffffff
fffffffffffffffffffc0000
0000000000003fffff
ffffffffff

The 1k bit request mask.
This indicates the
segments of the package
needed by this remote.
The mask should be read
from right to left (i.e., the
rightmost bit corresponds
to the beginning of the
file) with a 9 bit indicating
a needed segment. If the
“REQUEST” field is ERROR
then this field is set to
UNKNOWN.

256

fffffffffffffffffffffffffff
ffffffffffffffffffff3fffff
fffffffffffffffffffffffffff
fffffffffffffffffffffffffff
fffffffffffffffffffffffffff
fffffffffffffffffffffffffff
fffffffffffffffffffffffffff
fffffffffffffffffffc0000
0000000000003fffff
ffffffffff

The current 1k bit
transmission mask. This
indicates the current set
of segments queued for
transmission after ap-
plication of this request
mask. It reflects the
cumulative set of masks
from each requesting
remote up until the file
is transmitted. If the
“REQUEST” field is ERROR
then this field is set to
UNKNOWN.

256

Daily Logs : Confirmation Log

This is a comprehensive audit trail of each package
confirmation received from a remote. A sample, from the
file named Confirm01-28.log, is:

20090128000005 0000006132 REDHAT02 10.4.4.30
“Delivered OK “ 2009/01/28 00:00:05 0000000001Loads
0000000000Gaps 0000000000Errno

Field Meaning Field
Length

20090128000005 Date and Time of Request 14
0000006132 Unique package id 10

REDHAT02 Site ID of the requesting
Receiver

8

10.4.4.30 IP of the confirming
Receiver

17

“Delivered OK” One of: Delivered OK, No
Client, Bad Client
Directory, FInstall Error
Code, FInstall Timed Out,
Error Changing
Ownership, Preprocessor
Error, No Disk Space to
Install, No Bandwidth,
FAnnounce Rejected,
Filtered Out, or Installed
OK

26

2009/01/28 0:00:05 The delivered time at the
Receiver. This is the time
(normalized to match the
Sender’s time) that the file
was written into the
client’s destination
directory on the remote.

19

0000000001loads The number of full or
partial load attempts at
the remote

15

0000000000Gaps The number of gaps in
the incoming file during
its first load attempt. This
can be used to monitor
the health of an
individual Receiver or
compare the reception
performance across
multiple Receivers.

14

Field Meaning Field
Length

0000000000errno The local errno as re-
ported by an external
application at the remote.
For instance, FINSTALL
can provide an error exit
status when installing a
delivered file. This status
will be returned as the
errno value in the file’s
confirmation.

15

Appendix D : Video and Audio Multicasting

Video and Audio Multicasting

The Sender supports multicast streaming of locally stored
MPEG1, MPEG2 and MPEG4 files, including audio files, for
real-time rendering on compatible downstream devices.

The following table describes supported file formats:

Media Container Video Encoding Audio Encoding Protocol
MPEG Transport
Stream

MPEG1, MPEG2, MPEG4.1
or MPEG4.10(h264)

MPEG Audio UDP Multicast

Video Only MPEG1 or MPEG2 RTP Multicast

Audio Only MPEG Audio (including
MP3)

RTP Multicast

MPEG Program
Stream

MPEG1 or MPEG2 Mpeg Audio RTP Multicast

The user instructs the Sender to stream the locally stored
file (posted to the Sender through the user’s FTP account)
by submitting a specially formatted envelope file into the
user’s …/envelope directory. An example envelope file is:

Note the presence of the tag STREAM after the file name. This
tag tells the Sender to multicast stream the file to the network
rather than transmitting it as a file delivery. The Sender
administrator will configure the internal streaming server and
publish the IPMC:Port used as the streaming destination.
Multicast capable downstream clients (e.g., VLC on a PC, a
Set-Top-Box) that can receive and play the video or audio
stream can tune to the published IPMC:Port for reception.

The Sender automatically streams such files at the bit rate
designated inside the file and, if necessary, scales back the rate
of any non-stream transmissions (i.e., regular file deliveries) in
progress to prevent exceeding any configured bandwidth
constraints (e.g., time-of-day rates often used to limit the
amount of bandwidth a Sender is authorized to consume at
particular times during the week).

Begin
SOURCE_CLIENT ADMIN
FILE_NAME VideoFile.mpg
DEST_FILE_NAME VideoFile.mpg
DESTINATION
 Begin
 enD
enD
#Then, create the new video registration to begin
now
Begin
SOURCE_CLIENT ADMIN
FILE_NAME VideoFile.mpg STREAM
DEST_FILE_NAME VideoFile.mpg
INTERACTIVITY PUSH
ASSURANCE BEST_EFFORT 1
PRIORITY HIGH
DESTINATION
 Begin
 BROADCST,DEFAULT
enD
enD

